深圳UI培训-高端面授深圳UI培训机构
云和教育:云和数据集团高端IT职业教育品牌
  • 华为
    授权培训中心
  • 腾讯云
    一级认证培训中心
  • 百度营销大学
    豫陕深授权运营中心
  • Oracle甲骨文
    OAEP中心
  • Microsoft Azure
    微软云合作伙伴
  • Unity公司
    战略合作伙伴
  • 普华基础软件
    战略合作伙伴
  • 新开普(股票代码300248)
    旗下丹诚开普投资
  • 中国互联网百强企业锐之旗
    旗下锐旗资本投资

什么是大数据时代?

  • 发布时间:
    2022-02-08
  • 版权所有:
    云和教育
  • 分享:

随着互联网的飞速发展,特别是近年来随着社交网络、物联网、云计算以及多种传感器的广泛应用,以数量庞大,种类众多,时效性强为特征的非结构化数据不断涌现,数据的重要性愈发凸显,传统的数据存储、分析技术难以实时处理大量的非结构化信息,大数据的概念应运而生。如何获取、聚集、分析大数据成为广泛关注的热点问题。今天南京APP开发公司云多普小编就来给大家介绍大数据的概念与特点,分别讨论大数据的典型的特征,分析大数据要解决的相关性分析、实时处理等核心问题,最后讨论大数据可能要面临的多种挑战。

大数据”是近年来IT行业的热词,大数据在各个行业的应用逐渐变得广泛起来,那么,什么是大数据呢,什么是大数据概念呢,大数据概念怎么理解呢,一起来看看吧。

大数据概念:

大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中[2] 大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法)大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。

 

大数据概念的发展历史:

“大数据”这个术语最早期的引用可追溯到apache org的开源项目Nutch。当时,大数据用来描述为更新网络搜索索引需要同时进行批量处理或分析的大量数据集。随着谷歌MapReduce和Google File System (GFS)的发布,大数据不再仅用来描述大量的数据,还涵盖了处理数据的速度。

早在1980年,著名未来学家阿尔文·托夫勒便在《第三次浪潮》一书中,将大数据热情地赞颂为“第三次浪

潮的华彩乐章”。不过,大约从2009年开始,“163大数据”才成为互联网信息技术行业的流行词汇。美国互联网数据中心指出,互联网上的数据每年将增长50%,每两年便将翻一番,而目前世界上90%以上的数据是最近几年才产生的。此外,数据又并非单纯指人们在互联网上发布的信息,全世界的工业设备、汽车、电表上有着无数的数码传感器,随时测量和传递着有关位置、运动、震动、温度、湿度乃至空气中化学物质的变化,也产生了海量的数据信息。

大数据概念结构:

大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。

其次,想要系统的认知大数据,必须要全面而细致的分解它,我着手从三个层面来展开:

第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。我会从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。

第二层面是技术,技术是大数据价值体现的手段和前进的基石。我将分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。

第三层面是实践,实践是大数据的最终价值体现。我将分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。

 

大数据概念的特点:

大数据分析相比于传统的数据仓库应用,具有数据量大、查询分析复杂等特点。《计算机学报》刊登的“架构大数据:挑战、现状与展望”一文列举了大数据分析平台需要具备的几个重要特性,对当前的主流实现平台——并行数据库、MapReduce及基于两者的混合架构进行了分析归纳,指出了各自的优势及不足,同时也对各个方向的研究现状及作者在大数据分析方面的努力进行了介绍,对未来研究做了展望。

大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。第三,处理速度快,1秒定律,可从各种类型的数据中快速获得高价值的信息,这一点也是和传统的数据挖掘技术有着本质的不同。第四,只要合理利用数据并对其进行正确、准确的分析,将会带来很高的价值回报。业界将其归纳为4个“V”——Volume(大量)、Variety(多样)、Velocity(高速)、Value(价值)。

从某种程度上说,大数据是数据分析的前沿技术。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。

大数据概念的用途:

大数据可分成大数据技术、大数据工程、大数据科学和大数据应用等领域。目前人们谈论最多的是大数据技术和大数据应用。工程和科学问题尚未被重视。大数据工程指大数据的规划建设运营管理的系统工程;大数据科学关注大数据网络发展和运营过程中发现和验证大数据的规律及其与自然和社会活动之间的关系。

物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。

有些例子包括网络日志,RFID,传感器网络,社会网络,社会数据(由于数据革命的社会),互联网文本和文件;互联网搜索索引;呼叫详细记录,天文学,大气科学,基因组学,生物地球化学,生物,和其他复杂和/或跨学科的科研,军事侦察,医疗记录;摄影档案馆视频档案;和大规模的电子商务 。

大数据的作用

对于一般的企业而言,大数据的作用主要表现在两个方面,分别是数据的分析使用与进行二次开发项目。通过对禧金信息大数据进行分析,不仅能把隐藏的数据挖掘出来,还能通过这些隐藏的讯息,通过实体的销售,提升自己的客户源。至于对数据进行二次开发,在网络服务项目中被运用的比较多,通过将这些信息进行总结与分析,从而制定出符合客户需要的个性化方案,并营造出一种全新的广告营销方式,在这里,你需要明白的是,通过大数据的分析,将产品与服务进行结合起来的并不是偶然事件,实现这种的往往是数据时代的领导者。

综上所述,大数据的运用,不仅标志着时代的进步,同时还激励着人们进行更深领域的探究。此外,针对大数据的研究,除了上述内容外,还需要了解大数据的三个特征,分别是规模大、运转速度快及数据多样性。通过对这三个方面的研究,不仅可以更容易的观察到数据的本质吗,有利于软件处理平台的有效运转。